
libEnsemble: A Library for Managing
Ensembles of Calculations

Stephen Hudson Jeffrey Larson Stefan Wild

Argonne National Laboratory

July 13, 2018

What is libEnsemble

I libEnsemble is a software library to coordinate the concurrent
evaluation of ensembles of calculations.

I libEnsemble uses a manager to allocate work to various workers.

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 21.

What is libEnsemble

I libEnsemble is a software library to coordinate the concurrent
evaluation of ensembles of calculations.

I libEnsemble uses a manager to allocate work to various workers.

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 21.

What is libEnsemble

I libEnsemble is a software library to coordinate the concurrent
evaluation of ensembles of calculations.

I libEnsemble uses a manager to allocate work to various workers.

I A libEnsemble worker is the smallest indivisible unit to perform

2 of 21.

libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f.

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f.

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available.

3 of 21.

libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f.

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f.

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available.

3 of 21.

libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f.

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f.

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available.

3 of 21.

libEnsemble dependencies

I Python 2.7, 3.4 or above.

I An MPI 1.x/2.x/3.x implementation (e.g., MPICH or OpenMPI) built
with shared/dynamic libraries.

I mpi4py v2.0.0 or above.

I NumPy v1.10 or above.

4 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

completed
generation

active
simulation

...

completed
simulation

si
m
ul
at
io
n

ou
tp
ut

simulation
work

5 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function

I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures

I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations

I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output

I Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

I Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation

I Ability to recover hardware resources from
libEnsemble-/generation-/simulation-terminated calculations

I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations

I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I (*) Simulation/generation checkpoint and restart

I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs

I (*) Thousands of concurrent workers

6 of 21.

Possible user requirements of libEnsemble

I sim_f/gen_f calculations can employ/access parallel resources
I This places requirements on user’s environment and

simulation/generation function
I Maintenance of calculation history and performance measures
I Termination of unresponsive simulation/generation calculations
I Termination based on intermediate simulation/generation output
I Nonfatal handling (i.e., graceful degradation/fail soft) of failed

simulation/generation calculation
I Ability to recover hardware resources from

libEnsemble-/generation-/simulation-terminated calculations
I (*) Simulation/generation checkpoint and restart
I (*) Execution on multiple LCFs
I (*) Thousands of concurrent workers

6 of 21.

Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel.

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work.

I Don’t have to write your own kills, just complete libEnsemble
templates.

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

7 of 21.

Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel.

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work.

I Don’t have to write your own kills, just complete libEnsemble
templates.

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

7 of 21.

Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel.

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work.

I Don’t have to write your own kills, just complete libEnsemble
templates.

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

7 of 21.

Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel.

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work.

I Don’t have to write your own kills, just complete libEnsemble
templates.

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

7 of 21.

Why would you want to use libEnsemble?

I Easily take serial code and start running in parallel.

I Add another level of parallelism to a simulation that no longer scales

I Don’t have to write your own tracking code, libEnsemble will tell
you which runs fail and start other work.

I Don’t have to write your own kills, just complete libEnsemble
templates.

I Want to add concurrency to a generator (e.g., multiple local
optimizers.)

7 of 21.

Why libEnsemble and not. . . ?

Dakota: I Few simulation optimization generators.
I C++

Swift: (the parallel scripting language)
I “Can run million programs, thousands at a time, launching

hundreds per second.”
I Require writing your generators in Swift’s scripting language.
I Difficult to tightly couple generation of inputs and future/active

running simulations.

8 of 21.

Why libEnsemble and not. . . ?

Dakota: I Few simulation optimization generators.
I C++

Swift: (the parallel scripting language)
I “Can run million programs, thousands at a time, launching

hundreds per second.”
I Require writing your generators in Swift’s scripting language.
I Difficult to tightly couple generation of inputs and future/active

running simulations.

8 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

completed
simulation

9 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

completed
simulation

requestedpoint

9 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

idle worker

9 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

idle workersimulation
work

9 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

active
simulation

persistent
generation

active
simulation

...

active
simulation

9 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

completed
simulation

persistent
generation

active
simulation

...

completed
simulation

simulation
output

sim
ulation

output

9 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

idle worker

persistent
generation

active
simulation

...

idle worker

9 of 21.

libEnsemble overview

libEnsemble
Manager

Workers

Receive

Update active
and queue

Allocation
function

Give work

idle worker

persistent
generation

active
simulation

...

idle worker

si
m
ul
at
io
n

ou
tp
ut

simulation
work

9 of 21.

Timing libEnsemble overhead
Time for libEnsemble to sample/evaluation 30×(workers) points

Tons of system-dependent caveats

10 of 21.

Timing libEnsemble overhead
Time for libEnsemble to sample/evaluation 30×(workers) points

32 nodes × 36 cores = 1152-1 workers

10 of 21.

Timing libEnsemble overhead
Time for libEnsemble to sample/evaluation 30×(workers) points

64 nodes × 16 cores = 1024-1 workers

10 of 21.

Use cases

I A user wants to optimize a function that depends on a simulation.
I The simulation is already using parallel resources, but not a large

fraction of some computer.
I libEnsemble can coordinate the concurrent evaluation of the

simulation sim_f at various parameter values and gen_f would return
candidate parameter values (possibly after each sim_f output).

Naturally, combinations of use cases is supported as well.

11 of 21.

Use cases

I A user has a gen_f that produces different meshes to be used within
a sim_f.

I Given the sim_f output, gen_f will refine a mesh or produce a new
mesh.

I libEnsemble can ensure that the calculated meshes can be used by
multiple simulations without requiring movement of data.

Naturally, combinations of use cases is supported as well.

11 of 21.

Use cases

I A user wants to evaluate a simulation sim_f at parameters sampled
from a set of parameter values.

I Many parameter sets will cause the simulation to fail.
I libEnsemble can stop unresponsive evaluations, and recover

computational resources for future evaluations.
I gen_f can update the sampling after discovering regions where

evaluations of sim_f fail.

Naturally, combinations of use cases is supported as well.

11 of 21.

Use cases

I A user has a simulation sim_f that requires calculating multiple
expensive quantities, some of which depend on other quantities.

I libEnsemble can observe intermediate quantities in order to stop
related calculations and preempt future calculations associated with a
poor parameter values.

Naturally, combinations of use cases is supported as well.

11 of 21.

Use cases

I A user wishes to identify multiple local optima for a sim_f.
I libEnsemble can use the points from the APOSMM gen_f to

identify optima

Naturally, combinations of use cases is supported as well.

11 of 21.

Use cases

I A user wishes to identify multiple local optima for a sim_f.
I libEnsemble can use the points from the APOSMM gen_f to

identify optima

Naturally, combinations of use cases is supported as well.

11 of 21.

Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

12 of 21.

Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

12 of 21.

Problem setup

I We want to identify distinct, “high-quality”, local minimizers of

minimize f (x)

l ≤ x ≤ u

x ∈ Rn

I High-quality can be measured by more than the objective.

I Derivatives of f may or may not be available.

I The simulation f is likely using parallel resources, but it does not
utilize the entire machine.

12 of 21.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

13 of 21.

Global optimization is difficult

Theorem (Törn and Žilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

13 of 21.

Multistart Methods
Given some local optimization routine L:
Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

14 of 21.

Multistart Methods
Given some local optimization routine L:
Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

14 of 21.

Multistart Methods
Given some local optimization routine L:
Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

14 of 21.

Multistart Methods
Given some local optimization routine L:
Algorithm 1: General Multistart

for k = 1, 2, . . . do
Evaluate f at N points drawn from D
Start L at some set (possibly empty) of previously evaluated points

I Get to use problem specific local optimization routines.
I Possibly multiple levels of parallelism (objective, local method, global

method); L may involve many sequential evaluations of f . . .

I Which points should start runs?
I If resources are limited, how should points from each run receive

priority?

I Ideally, only one run is started for each minima.
I Exploring by sampling. Refining with L.

14 of 21.

Multi-Level Single Linkage

I f ∈ C 2, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

15 of 21.

Multi-Level Single Linkage

I f ∈ C 2, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

I L is strictly descent and converges to a minimum (not a stationary
point).

I

rk =
1√
π

n

√
Γ
(
1 +

n
2

)
vol (D)

σ log kN
kN

(1)

Theorem
If rk → 0, all local minima will be found almost surely.

If rk is defined by (1) with σ > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

15 of 21.

APOSMM

Iteration: 0; r_k: Inf

16 of 21.

APOSMM

Iteration: 1; r_k: 0.743

16 of 21.

APOSMM

Iteration: 2; r_k: 0.743

16 of 21.

APOSMM

Iteration: 3; r_k: 0.689

16 of 21.

APOSMM

Iteration: 4; r_k: 0.643

16 of 21.

APOSMM

Iteration: 5; r_k: 0.605

16 of 21.

APOSMM

Iteration: 6; r_k: 0.605

16 of 21.

APOSMM

Iteration: 7; r_k: 0.605

16 of 21.

APOSMM

Iteration: 8; r_k: 0.605

16 of 21.

APOSMM

Iteration: 9; r_k: 0.605

16 of 21.

APOSMM

Iteration: 10; r_k: 0.605

16 of 21.

APOSMM

Iteration: 35; r_k: 0.605

16 of 21.

APOSMM

Iteration: 36; r_k: 0.605

16 of 21.

APOSMM

Iteration: 37; r_k: 0.589

16 of 21.

APOSMM

Iteration: 38; r_k: 0.574

16 of 21.

APOSMM

Iteration: 39; r_k: 0.560

16 of 21.

APOSMM

Iteration: 40; r_k: 0.548

16 of 21.

APOSMM

Iteration: 41; r_k: 0.536

16 of 21.

APOSMM

Iteration: 42; r_k: 0.525

16 of 21.

APOSMM

Iteration: 43; r_k: 0.515

16 of 21.

APOSMM

Iteration: 44; r_k: 0.497

16 of 21.

APOSMM

Iteration: 45; r_k: 0.480

16 of 21.

APOSMM

Iteration: 80; r_k: 0.281

16 of 21.

APOSMM

Iteration: 81; r_k: 0.279

16 of 21.

APOSMM

Iteration: 82; r_k: 0.276

16 of 21.

APOSMM

Iteration: 83; r_k: 0.274

16 of 21.

APOSMM

Iteration: 84; r_k: 0.272

16 of 21.

APOSMM

Iteration: 85; r_k: 0.270

16 of 21.

APOSMM

Iteration: 86; r_k: 0.268

16 of 21.

APOSMM

Iteration: 87; r_k: 0.266

16 of 21.

APOSMM

Iteration: 88; r_k: 0.264

16 of 21.

APOSMM

Iteration: 89; r_k: 0.263

16 of 21.

APOSMM

Iteration: 90; r_k: 0.262

16 of 21.

APOSMM

Iteration: 91; r_k: 0.261

16 of 21.

APOSMM

Iteration: 92; r_k: 0.260

16 of 21.

APOSMM

Iteration: 93; r_k: 0.259

16 of 21.

APOSMM

Iteration: 94; r_k: 0.258

16 of 21.

APOSMM

Iteration: 95; r_k: 0.257

16 of 21.

APOSMM

Iteration: 96; r_k: 0.256

16 of 21.

APOSMM

Iteration: 97; r_k: 0.255

16 of 21.

APOSMM

Iteration: 98; r_k: 0.255

16 of 21.

APOSMM

Iteration: 99; r_k: 0.254

16 of 21.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

17 of 21.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

17 of 21.

Properties of the local optimization method

Necessary:
I Honors a starting point
I Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBYQA satisfies these [Powell, 2009]

Possibly beneficial:
I Can return multiple points of interest
I Reports solution quality/confidence at every iteration
I Can avoid certain regions in the domain
I Uses a history of past evaluations of f
I Uses additional points mid-run

17 of 21.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The global minimum has been found at a level τ > 0 at batch k if an
algorithm it has found a point x̂ satisfying:

f (x̂)− f ∗(1) ≤ (1− τ)
(
f (x0)− f ∗(1)

)
,

where x0 is the starting point for problem p.

18 of 21.

Measuring Performance

Notation:

Let X ∗ be the set of all local minima of f .
Let f ∗(i) be the ith smallest value {f (x∗)|x∗ ∈ X ∗}.
Let x∗(i) be the element of X ∗ corresponding to the value f ∗(i).

The j best local minima have been found at a level τ > 0 at batch k if:∣∣∣{x∗(1), . . . , x
∗
(j−1)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ = j − 1

&∣∣∣{x∗(j), . . . , x
∗
(̄j)

}⋂{
x∗(i) : ∃x ∈ Hk with

∥∥∥x − x∗(i)

∥∥∥ ≤ rn(τ)
}∣∣∣ ≥ j − j + 1,

where j and j̄ are the smallest and largest integers such that

f ∗
(̄j) = f ∗(j) = f ∗(j) and where rn(τ) =

n
√

τ vol(D)Γ(n
2 +1)

πn/2 .

18 of 21.

Problems considered
GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

I 600 synthetic problems with known local minima

I n = 2, . . . , 7

I 10 local minima in the unit cube with a unique global minimum

I 100 problems for each dimension

I 5 replications (different seeds) for each problem

I 5000 evaluations

19 of 21.

Data Profiles
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256 512
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

20 of 21.

Data Profiles
Within n

√
10−3Γ(n

2 +1)

πn/2 of 7 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

20 of 21.

Data Profiles
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

20 of 21.

Data Profiles
Within n

√
10−4Γ(n

2 +1)

πn/2 of 3 best minima

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

20 of 21.

Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA
4 workers, BOBYQA
8 workers, BOBYQA

20 of 21.

Data Profiles
f (x)− f ∗(1) ≤ (1− 10−5)

(
f (x0)− f ∗(1)

)

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

d
(α
)

2 workers, BOBYQA (idealized)
4 workers, BOBYQA (idealized)
8 workers, BOBYQA

20 of 21.

Closing Remarks

I libEnsemble is a software library to coordinate the concurrent
evaluation of calculations.

I We have a growing set of use cases and examples.

I Let us know if you have examples you’d like to see.

21 of 21.

